A handy reference formula for use in geotechnical analysis and design FieldΒ Given Below :
- πΌπ=π1βπ€2log10π2/π1
- πΌπ‘=πΌππΌπ
- πΆπ’=π·60π·10
- πΆπ=π·302π·60π·10
- πΌπ=0.73 (π€πΏβ20)
- πΌπ=π€πΏβπ€π
- πΌπ =π€πβπ€π
- πΌπΏ=π€βπ€ππΌπ
- πΌπ=π€πΏβπ€πΌπ
- π΄=πΌππΉwhereΒ πΉΒ is clay fraction (Activity)
- π π·=ππππ₯βπππaπ₯βππππ=1/πΎπ,πππβ1/πΎπ1/πΎπ,πππβ1/πΎπ,πππ₯
- π1π2=tanπΌ1tanπΌ2 (non homogeneous)
- π=πΆπΎπ€ππ31+ππ2
- πΎ=πππΎπ€(absolute permeability)
- π=ππln(π2/π1)π§22βπ§12 (Permeability in unconfined aquifer)
- π=π2ππln(π2/π1)π§2βπ§1 (Permeability in confined aquifer)
- πβ=π1π»1+π2π»2π»1+π»2 (effective horizontal permeability in stratified soils)
- ππ£=π»1+π»2π»1π1+π»2π2 (effective vertical permeability in stratified soils)
- ππ=βπβππ£(effective permeability)
- π=ππΏπ΄π‘lnβ1β2 (falling head permeability test)
- π=ππΏπ΄β(constant head permeability test)
- π=ππβππππΒ (seepage discharge)
- ππ§=3π2π1π§2 (11+(ππ§)2 )52 (Boussinesqβs formula)
- ππ§=ππ2π1π§2 (1π2+(ππ§)2 )32 whereΒ π=β1β2π2β2π(Wesrwegaardβs formula)
- ππ§=2πππ§(11+(π₯π§)2)2 (line load)
- ππ§=ππ(2π+sin2π) whereΒ π=tanβ1ππ§(stress under centre of strip load of width 2πΒ )
- ππ§=ππ(2π+sin2πsin2β )Β where 2π=π½1βπ½2Β πnπ2β =π½1+π½2 ( strip eccentric point)
- ππ§=π(1βcos3π) whereΒ π=tanβ1π π§(stress under centre of circular load)
- sinβ =π1βπ3π1+π3 (for cohesion less soils)
- sinβ =(π1βπ3)/2πcotβ +(π1+π3)/2 (for cohesive soils)
- π1=2πtanπΌ+π3tan2πΌwhereΒ πΌ=45+β 2
- tanβ =ππ(shear box test for cohesion less soils)
- π=πππ·2(π»2+π·6) (if both top and bottom surfaces contributes)
- π=πππ·2(π»2+π·12) (if only bottom surface contribute)
- ππ=ππ΅Β 1βπ2πΈΒ πΌπΒ (immediate settlement )
- ππ=ππ(π΅ππ΅ππ΅π+0.3π΅π+0.3)2 (settlement of footing based on plate settlement)
- Ξπ’=π΅(Ξππ)+π΄π΅(Ξππ) (Skemptonβs pore pressure parameters)
- π=ππ+πis stress path equation whereΒ β =tanβ1πΒ andΒ π=π/cosβ
- πΆπ=Ξπlog10π0+Ξππ0
- πΆπ=0.009 (π€πΏβ10) (for normally consolidated soil)
- πΆπ=0.007 (π€πΏβ10) (for over consolidated soil)
- Ξπ1+π0=Ξπ»π»
- ππ£=Ξπ»/π»Ξπ0
- ππ£=ππΎπ€ππ£
- ππ£=ππ£π‘π2
- ππ£=π4π2 whenΒ πβ€0.6
- ππ£=β0.933 log10(1βπ)β0.085 whenΒ π>0.6
- ππ=πΆππ»1+π0 log10π0+Ξππ0
- ππ=πΆππ»1+π0 log10πππ0+πΆππ»1+π0 log10π0+Ξπππ
- π΄π=π·02βπ·π2π·π2
- ππ=ππ’πΉπΎπ»
- ππ’=πππ+πππ+0.5Β πΎΒ π΅Β ππΎΒ (Terzaghiβs strip)
- ππ’=1.3Β πππ+πππ+0.4Β πΎΒ π΅Β ππΎΒ (Terzaghiβs square)
- ππ’=1.3Β πππ+πππ+0.3Β πΎΒ π΅Β ππΎΒ (Terzaghiβs circle)
- ππ’=(1+0.3π΅πΏ)Β πππ+πππ+(1β0.2π΅πΏ)0.5Β πΎΒ π΅Β ππΎΒ (Terzaghiβs rectangle)
- ππ’=πππππππππ+πππππππππ+0.5Β πΎΒ π΅β²Β ππΎΒ ππΎππΎππΎΒ (Meyerhof)
π΅β²=π΅β2ππ₯Β andΒ πΏβ²=πΏβ2Β ππ¦
- πππ’=πππ(Skempton
ππ=5(1+0.2π·ππ΅)(1+0.2π΅πΏ)
Limiting value ofΒ π·π/π΅Β ππ Β 2.5
- ππ’=πβπβπ+πΆΒ (ENR) whereΒ πΆ=2.54Β ππΒ πππΒ ππππΒ βπππππΒ πnπΒ 0.254Β ππΒ πππΒ π π‘πππΒ βπππππ
- ππ’=πβπβπππ+πΆ2 (Hiley)
whereΒ πΆ=πΆ1+πΆ2+πΆ3
πΆ1=9.05π π΄Β with dolley andΒ πΆ1=1.77π π΄Β without dolley andΒ πΆ2=0.657π πΏπ΄Β πΆ3=3.55π π΄Β πΏ=πΏππππ‘βΒ ππΒ ππππΒ ππΒ πΒ π =ππππΒ ππππππtπ¦Β ππΒ π‘πππππ =0.1πΒ π΄=ππππ π Β π πππ‘πππΒ ππππΒ ππΒ ππππΒ ππΒ ππ2
ππ=π+π2ππ+πΒ whenΒ π>π
ππ=π+π2ππ+πβ(πβπππΈ+π)2 whenΒ π<ππ
- ππ’=πβπβπ+π02 (Danish)Β π0=β2πβπβπΏπ΄πΈ
- ππ’=π΄ππππ+π΄π πΌπΒ (clays)
- ππ’=π΄ππππ+π΄π π(πΜ +2π) (clays)
- ππ’=π΄ππΜ Β ππ+π΄π πΜ Β πtanπΏ(sands)Β πΜ Β πππππππ πΒ π’ππ‘πΒ 15Β πΒ ππππ‘β
- ππ’=π(π΄ππππ+π΄π πΌπ) orΒ ππ’=(π΄πππππ+π΄ππ Β π) (Group)
- ππ=πππΜ β2πβππ+π’
- ππ=πππΜ +2πβππ+π’
- ππ=1βsinβ 1+sinβ andΒ ππ=1+sinβ 1βsinβ
- π»π=2ππΎβπΎπΒ and unsupported vertical cut =2π»π
- ππ=sin2(π½+β )sin2π½sin(π½βπΏ) (1+βsin(β +πΏ)sin(β βπ)sin(π½βπΏ)sin(π½+π))2 (Coulombβs active )
- ππ=sin2(π½ββ )sin2π½sin(π½+πΏ) (1ββsin(β +πΏ)sin(β +π)sin(π½+πΏ)sin(π½+π))2 (Coulombβs passive )
- ππ=cosπ½ββcos2π½βcos2β cosπ½+βcos2π½βcos2β andΒ ππ=πππΎβ22cosπ½Β (Inclined backfill)
- ππ=cosπ½+βcos2π½βcos2β cosπ½ββcos2π½βcos2β andΒ ππ=πππΎβ22cosπ½Β (Inclined backfill)
- ππ=15+12(πβ15)Β π€βπππ>15Β πππΒ ππ=πΒ π€βππΒ πβ€15 (dilatancy)
- ππ=πΊβ11+π(Quick sand condition)